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Abstract

Usually, the stress concentration factors (SCFs) for holes and the stress intensity factors (SIFs) for cracks are
evaluated by using the data near holes or cracks. However, the abrupt change of the stresses near holes, especially

near crack tips, may lead to an unavoidable error. Thus, it is always interesting to ®nd an equivalent formulation
for SCF and SIF by using only remote boundary responses (displacements, stresses and strains) cooperating with
the necessary geometric data. Through a special boundary element formulation of which the fundamental solution

was derived using Stroh's formalism for two-dimensional anisotropic elasticity, all the internal stresses and strains
can be expressed in terms of the boundary (not including the hole and crack boundaries) displacements and
tractions. By proper mathematical manipulation, a closed form solution for SIF of the internal crack and SCF of

the internal hole, expressed by using only remote boundary displacements and tractions, is derived in this paper. To
show that the proposed formula is accurate and e�cient, several numerical examples are presented. 7 2000 Elsevier
Science Ltd. All rights reserved.

Keywords: Stress concentration factor; Stress intensity factor; Hole; Crack; Boundary element; Stroh formalism; Anisotropic

elasticity

1. Introduction

It is well known that the largest stress around the hole of an anisotropic body may be several times of
the remote stresses, while for a cracked body, the stresses near the crack tip even exhibit a square root
singularity. To denote the highest stress concentration caused by a hole or a crack, parameters like the
stress concentration factor (SCF) of the hole and the stress intensity factor (SIF) of the crack are
usually used. Although several analytical solutions for SCF and SIF can be found in the literature

International Journal of Solids and Structures 37 (2000) 5957±5972

0020-7683/00/$ - see front matter 7 2000 Elsevier Science Ltd. All rights reserved.

PII: S0020-7683(99 )00245-0

www.elsevier.com/locate/ijsolstr

* Corresponding author. Fax: +886-6-238-9940.

E-mail address: CHwu@mail.ncku.edu.tw (C. Hwu).



(Savin, 1961; Murakami, 1987), they are limited to a few idealized unbounded bodies. For practical
problems involving ®nite geometry and complex loading, numerical methods are usually employed, for
which the stresses near holes or cracks are generally required (Owen and Fawkes, 1983; Anderson,
1991).

Due to singularity characteristics, more e�orts have been devoted to cracked-bodies than to hole-
bodies. The most famous one is the path independent J-integral proposed by Rice (1968), which can be
used to calculate SIFs using data that are far removed from the crack tip. However, the J-integral
cannot be applied to problems where mixed-mode SIFs are present since the value of the integral gives
only the sum of SIFs. To overcome this situation, an alternative path-independent integral considering
the interaction energy between the elastic state of interest and an auxiliary state was proposed by Chen
and Shield (1977), and was used by Yau et al. (1980) for isotropic materials and by Wu (1989) for
anisotropic materials. In this method, the stress, displacement and SIF of an auxiliary state in the same
cracked body are required a priori to calculate SIF of the state of interest, which is inconvenient for
complicated ®nite bodies.

Recently, my co-workers and I developed a special boundary element method dealing with the
problems of multi-holes, cracks and inclusions (Hwu and Yen, 1991; Hwu and Liao, 1994). The special
feature of this element is that no meshes are needed around the hole (or crack or inclusion) boundary.
Through this boundary element, all the internal stresses and strains can be expressed in terms of
displacements and tractions on the boundaries excluding the hole, crack and inclusion boundaries.
Hence, even the SCF or SIF is de®ned by the stresses around the hole or near the crack tip and it may
be calculated using the displacements and tractions on the remote boundaries. However, no explicit
closed-form solution for SCF and SIF by using only the remote boundary data was found at that stage.
Moreover, the shape of the hole (or inclusion) was restricted to be elliptic. In this paper, by Stroh's
formalism (Stroh, 1958; Ting, 1996) and proper boundary element formulation (Hwu, 1999), explicit
closed form solutions for SIF of internal straight cracks and SCF of internal elliptical or polygon-like
holes are derived and expressed in terms of the remote boundary displacements and tractions. Since
Stroh's formalism is for two-dimensional linear anisotropic elasticity, our results can be applied to any
kind of linear anisotropic materials but is restricted to the two-dimensional problems which include
generalized plane stress, generalized plane strain and anti-plane problems. To show that the proposed
formula is accurate and e�cient, several numerical examples are presented.

2. Green's function

2.1. Anisotropic elasticity

For a two-dimensional anisotropic linear elastic medium, the basic equations of strain±displacement,
stress±strain and equilibrium may be written as

Eij � 1

2
�ui, j � uj, i �, sij � CijksEks, sij, j � 0, �1�

where, ui, sij and Eij are, respectively, the displacement, stress and strain. The repeated indices imply
summation; a comma stands for di�erentiation and Cijks are the elastic constants which are assumed to
be fully symmetric and positive de®nite. A general solution satisfying Eq. (1) has been presented as
(Stroh, 1958; Ting, 1996)

u � Af�z� � Af�z�, fff � Bf�z� � Bf�z�, �2a�
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where

A � � a1 a2 a3

�
, B � � b1 b2 b3

�
,

f�z� � �f1�z1 �, f2�z2�, f3�z3��T, za � x1 � pax2, a � 1, 2, 3: �2b�

u and fff, are 3 � 1 column vectors denoting the displacements �u1, u2, u3� and stress functions �f1, f2,
f3�: The stress function fi is related to the stresses by

si1 � ÿfi, 2, si2 � fi, 1: �2c�

The superscript T denotes the transpose and the overline represents the conjugate of a complex number.
The material eigenvalues pa, and eigenvectors aa, ba are determined by the following eigenrelations:

Nxxx � pxxx, �3a�
where

N �
�

N1 N2

N3 NT
1

�
, xxx �

�
a
b

�

N1 � ÿTÿ1RT, N2 � Tÿ1 � NT
2 ,

N3 � RTÿ1RT ÿQ � NT
3 �3b�

and

Qik � Ci1k1, Rik � Ci1k2, Tik � Ci2k2: �3c�
fa�za�, a � 1, 2, 3, are three holomorphic functions of complex variables za, which will be determined by
the boundary conditions set for each particular problem. The surface traction vector t can be calculated
by using Cauchy's formula (Sokolniko�, 1956), i.e., ti � sijmj where mj is the unit normal to the surface
boundary. If s is the arc length measured along a curved boundary, using Cauchy's formula and the
relation given in Eq. (2c), we may obtain a useful formula:

t � @fff
@s

�4�

Usually, the stress components along any other coordinate axes are calculated using the transformation
law of second order tensors. Based upon the formula obtained in Eq. (4), an alternative approach to
determining stress components of the rotated coordinate axes has been introduced (Ting, 1996). Let (n,
m) be the unit vector tangent and normal to a surface boundary. By Eq. (4) we have

smm � mT�y�fff,n, smn � nT�y�fff,n, sm3 �
ÿ
fff,n

�
3
,

snn � ÿnT�y�fff,m, snm � ÿmT�y�fff,m � smn, sn3 � ÿ
ÿ
fff,m

�
3
, �5a�

where
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nT�y� � �cos y, sin y, 0�, mT�y� � � ÿ sin y, cos y, 0�, �5b�
and the angle y is directed counterclockwise from the positive x1-axis to the direction of n.

2.2. Green's function for elliptical holes

Consider an in®nite anisotropic plate containing a traction-free hole subjected to a point force Ãp
applied at point Ãx: The elasticity solution of this problem is known as Green's function for hole
problems, which can also be used as a special fundamental solution for boundary element formulation.
If the hole boundary shape is an ellipse or has degenerated to a crack, the associated analytical solution
has been obtained as (Hwu and Yen, 1991; Wang and Tarn, 1993)

f�z� � �F0 � F1� Ãp,
where

F0 � 1

2pi
� log

�
za ÿ ẑa

�
� AT,

F1 � 1

2pi

X3
k�1
� log

�
zÿ1a ÿ �̂zk

�
� Bÿ1 ÅBIk ÅA

T �6�

<< >> means a diagonal matrix in which each component is varied according to the subscript a:
Ik �� I k

a �, where I 1
a � 1, 0, 0, I 2

a �0, 1, 0, I 3
a � 0, 0, 1, a � 1, 2, 3:

za �
za �

�����������������������������������
z2a ÿ

ÿ
a2 � b2p2

a

�q
aÿ ibpa

, ẑa �
ẑa �

�����������������������������������
ẑ2a ÿ

ÿ
a2 � b2p2

a

�q
aÿ ibpa

, �7�

and a, b are the lengths of semi-axes of the ellipse. For a straight crack, b = 0.

2.3. Green's function for polygon-like holes

If the hole boundary shape is not an ellipse, the solution shown in Eq. (6) may still be used except the
transformation function provided in Eq. (7) should be changed. Consider a special hole, the contour of
which is given by the equations (Savin, 1961; Lekhnitskii, 1968):

x1 � a�cos j� ecos kj�,

x2 � a�c sin jÿ esin kj�, �8�
where 0 < cR1, and k is an integer. Note that e � 0 is the special case of an elliptical hole with semi-
axes a and ac, as discussed previously. When e � 0, c � 1 and e � 0, c40, the contour is respectively a
circular hole and a crack. In the case of c � 1 and k � 2 with an appropriate selection of the parameter
e, the hole will di�er little from an equilateral triangle with rounded corners (see Fig. 1). Not any
composition of a, c, e, k can have reasonable contours. Some contours with various compositions of a,
c, ek, are plotted in Fig. 1, from which we see that Eq. (8) generally represents a polygon-like shape. To
bring about a reduction of the rounding-o� radius at the corners and a smaller deviation of the contour
curves from the straight line, i.e., to have a more accurate parametric representation of a polygonal
hole, an increased number of cos and sin terms are needed in Eq. (8) (Savin, 1961).
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To ®nd a substitute for Eq. (7), an in®nite z-plane with a hole represented by Eq. (8) is now
transformed to the in®nite za-plane with a unit circle. By using Eq. (8) and the relations za � x1 � pax2

and za � eij around the unit circle, the transformation function between za and za is found to be (Hwu,
1990)

za � a

2

(
�1ÿ ipac�za � �1� ipac� 1za

� e�1� ipa�zka � e�1ÿ ipa� 1
zka

)
, �a is not summed�, �9�

If e � 0 (elliptical hole) or pa � i (isotropic materials), the transformation is one-to-one. Otherwise, the
transformation function is generally not one-to-one. If we designate the point outside of but nearest to
the unit circle to be the mapped point, a one-to-one transformation with cuts passing through the
critical points may be obtained. With this designation for nonsingle-valued transformation, the solutions
obtained will be well approximated if the critical points are far away from the hole (Hwu, 1992; Wang
and Tarn, 1993). Due to the complexity of Eq. (9), it is di�cult to obtain an explicit inverse function for
the polygonal hole like that for the elliptical hole as shown in Eq. (7). Thus, the numerical calculation
from za to za is necessary for the case of the general polygon-like hole.

3. Boundary element formulation

Due to the mathematical infeasibility of the ®nite domain problems, most of the analytical closed
form solutions are obtained for the in®nite domain problems. These closed form solutions are important
for engineers to observe the special feature of the discussed problem, such as SIF for crack problems
and SCF for hole problems. Moreover, with the aid of the analytical solutions for the in®nite domain
problems, most of the numerical techniques such as the ®nite element method and boundary element
method can be improved in their accuracy and e�ciency.

It is well known that Green's function plays an important role in the boundary element method. If

Fig. 1. Various contours of polygon-like holes.

C. Hwu, Y.C. Liang / International Journal of Solids and Structures 37 (2000) 5957±5972 5961



Green's function for the traction-free hole (or crack) problem is employed in boundary element
formulation as its fundamental solution, discretization around the hole (or crack) boundary is avoided.
This results in a saving of computer time and storage. Moreover, due to complete satisfaction of the
hole boundary condition, discretization with relatively coarse meshes can achieve high accuracy. Based
upon this concept, a linear boundary element formulation has been given in (Hwu, 1999). For the
convenience of later derivation, we present here the boundary integral equation of the discretized form
in which the boundary is discretized into M segments with N nodes, as shown in Fig. 2,

c�Ãx�u�Ãx� �
XM
m�1

n
ÃY
�1�
m
�Ãx�u�1�m � ÃY

�2�
m
�Ãx�u�2�m

o
�
XM
m�1

n
G�1�m
�Ãx�t�1�m �G

�2�
m
�Ãx�t�2�m

o
, �10a�

where

ÃY
�i�
m
�Ãx� �

�
Gm

ÃT�Ãx, x�$i�x� dGm,

G�i�m �Ãx� �
�
Gm

ÃU�Ãx, x�$i�x� dGm, i � 1, 2, �10b�

x � $1x
�1�
m �$2x�2�m ,

$1 � 1

2
�1ÿ x�, $2 � 1

2
�1� x�

and Ûij and T̂ij are, respectively, the displacements and tractions in the j-direction at point x

Fig. 2. Meshes, shape function and the prescribed boundary conditions.
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corresponding to a unit point force acting in the i-direction applied at point Ãx: The explicit formulae of
UÃ and TÃ can then be obtained by substituting Eq. (6) into Eq. (2). The results are

ÃU � 2Re
�
A�F0 � F1�

	
, ÃT � 2Re

�
B
ÿ
F0, s � F1, s

�	 �10c�

where

F0, s � 1

2pi
� 1

za ÿ ẑa

dza
dza

@za
@s
� AT �10d�

F1, s � 1

2pi

X3
k�1
� ÿzÿ2a

zÿ1a ÿ �̂zk

dza
dza

@za
@s
� Bÿ1 ÅBIk ÅA

T

and

@za
@s
� s1 � pas2, s1 � @x1

@s
, s2 � @x2

@s

dza
dza
� 2

a

n
�1ÿ ipac� ÿ �1� ipac�zÿ2a � ek�1� ipa �zkÿ1a ÿ ek�1ÿ ipa�zÿ�k�1�a

oÿ1
: �10e�

In Eqs. (10a) and (10b), a symbol with subscript m and superscript (1) or (2) denotes the value of node
1 or 2 of the mth element. ÃY

�i �
m �Ãx� and G�i �m �Ãx�, i � 1, 2 are the matrices of in¯uence coe�cients de®ning

the interaction between the point xÃ and the particular node (1 and 2) on element m. c(xÃ ) is a coe�cient
matrix dependent on the location xÃ . For a smooth boundary, c � 1

2I, where I is an identity matrix. For
an internal point c = I. For practical applications, c can be computed by assuming a unit rigid body
movement in any direction. The mapping function of za�za� has been given in Eq. (9) for general
polygon-like holes including elliptical holes and cracks. For elliptical holes, e � 0 in Eq. (9). While for
cracks, e � 0 and c � 0: The expression given in Eq. (7) is the inversion of the mapping function (9)
with e � 0:

Gm is the mth segment of the discretized boundary. To evaluate the integrals of Eq. (10b) along Gm, TÃ

and UÃ are expressed in terms of the nondimensionless coordinate x, and the di�erential dGm is
transformed to dx multiplied by Jacobian jJmj as

dGm�x� � jJmjdx, jJmj �
������������������������������������������

dx1

d
x

�2

�
�

dx2

dx

�2
s

� `m
2

�11�

where `m is the length of the mth element. Substituting Eq. (11) into Eq. (10b), ÃY
�i �
m and G�i �m can be

obtained by employing a numerical integration. Since the second node of the (m ÿ 1)th element is the
®rst node of the mth element, and may be named as the nth node of the entire boundary element, the
components Y�i �m or G�i �m at the same node n for the neighbor elements are summed together to become
ÃYn or Gn: Eq. (10a) can then be rewritten as

c�Ãx�u�Ãx� �
XN
n�1

ÃYn�Ãx�un �
XN
n�1

Gn�Ãx�tn �12�

Consider xÃ to be node i and use ci, ui, YÃ in, Gin to denote the values of c, u, YÃ n, Gn at node i. De®ne the
new matrices Yin = YÃ in, i$n; Yin = YÃ in + ci, i = n. When all the nodes are taken into consideration,
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Eq. (12) can ®nally produce a 3N� 3N system of equations which can be represented in matrix form as266666666664

Y11 Y12 . . . Y1N

Y21 Y22 . . . Y2N

: : . . . :
: : . . . :
Yi1 Yi2 . . . YiN

: : . . . :
: : . . . :
YN1 YN2 . . . YNN

377777777775

8>>>>>>>>>><>>>>>>>>>>:

u1

u2

:
:
ui

:
:
uN

9>>>>>>>>>>=>>>>>>>>>>;
�

266666666664

G11 G12 . . . G1N

G21 G22 . . . G2N

: : . . . :
: : . . . :
Gi1 Gi2 . . . GiN

: : . . . :
: : . . . :
GN1 GN2 . . . GNN

377777777775

8>>>>>>>>>><>>>>>>>>>>:

t1
t2
:
:
ti
:
:
tN

9>>>>>>>>>>=>>>>>>>>>>;
�13�

To solve the simultaneously linear algebraic equations shown in Eq. (13), we ®rst input the information
from the boundary conditions. That is, one of the two variables (ui or ti ) should be known in each
node. For displacement-prescribed boundary value problems, all ui are known along the boundary and ti
will then be determined from Eq. (13). Similarly, for traction-prescribed boundary value problems, all ti
are known along the boundary and ui are determined from Eq. (13). For mixed-boundary value
problems, parts of ui and ti are given; all the others are determined from Eq. (13).

4. Displacements, strains and stresses of interior points

Once all the values of ui and ti on the boundary are determined, the values of stresses, strains and
displacements at any interior point can be calculated by using Eq. (12). If xÃ is an interior point, c�Ãx� � I:
The displacement at any interior point inside the body can therefore be obtained from Eq. (12) as

u�Ãx� �
XN
n�1

�
Gn�Ãx�tn ÿ ÃYn�Ãx�un

	
�14�

By di�erentiating Eq. (14) with respect to xÃ , and using two-dimensional strain displacement relations
E11 � u1, 1, E22 � u2, 2, E33 � 0, E12� E21� 1

2�u1; 2 � u2; 1�, E13� E31� 1
2u3; 1, E23� E32� 1

2u3; 2, the strains can
directly be obtained if we know u,1 and u,2. By di�erentiating Eq. (14) with respect to x̂1 and x̂2, we ®nd

u,i�Ãx� �
XN
n�1

n
Gn,i�Ãx�tn ÿ ÃYn,i�Ãx�un

o
, i � 1, 2 �15�

Note that Gn, i and ÃYn, i can be obtained from Eq. (10b) analytically by directly di�erentiating TÃ and UÃ

with respect to xÃ . The explicit expressions of ÃT,i and ÃU,i for general polygon-like holes including the
elliptical holes �e � 0� and cracks �e � 0, c � 0)are:

ÃU,i � 2Re
�
A
ÿ
F0, x̂i � F1, x̂i

�	
,

ÃT,i � 2Re
�
B
ÿ
F0, sx̂i � F1, sx̂i

�	 �16a�

where

F0, x̂i �
1

2pi
� ÿ1

za ÿ ẑa

dẑa
dẑa

@ ẑa
@ x̂i
� AT
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F1, x̂i �
1

2pi

X3
k�1
� ÿ1

zÿ1a ÿ �̂zk

d
�̂zk

d �̂zk

@ �̂zk
@ x̂i
� Bÿ1 ÅBIk ÅA

T �16b�

F0, sx̂i �
1

2pi
� 1�

za ÿ ẑa
�2

dza
dza

@za
@s

dẑa
dẑa

@ ẑa
@ x̂i
� AT

F1, sx̂i �
1

2pi

X3
k�1
� zÿ2a�

zÿ1a ÿ �̂zk

�2

dza
dza

@za
@s

d
�̂zk

d �̂zk

@ �̂zk
@ x̂i
� Bÿ1 ÅBIk ÅA

T

@ ẑa
@ x̂i
�
�
1, i � 1
pa i � 2

,
@ �̂zk
@ x̂i
�
�
1, i � 1
�pk i � 2

,

dẑa
dẑa
� 2

a

n
�1ÿ ipac� ÿ �1� ipac�ẑ

ÿ2
a � ek�1� ipa �ẑ

kÿ1
a ÿ ek�1ÿ ipa�ẑ

ÿ�k�1�
a

oÿ1

d
�̂zk

dẑk
� 2

a

�ÿ
1� i �pkc

�ÿ ÿ1ÿ i �pkc
� �̂zÿ2k � ek

ÿ
1ÿ i �pk

� �̂zkÿ1k ÿ ek
ÿ
1� i �pk

� �̂zÿ�k�1�k

�ÿ1
: �16c�

After obtaining Eij through Eq. (15), the stresses of interior point xÃ can be evaluated by the stress±strain
law sij � CijksEks: If we de®ne

sss1 �
8<: s11
s12
s13

9=;, sss2 �
8<: s21
s22
s23

9=; �17�

it can be proved that (Hwu, 1999)

sss1�Ãx� � Qu,1�Ãx� � Ru,2�Ãx�, sss2�Ãx� � RTu,1�Ãx� � Tu,2�Ãx�, �18�
where Q, R, T have been de®ned in Eq. (3c), and u,1 and u,2 are given in Eq. (15).

5. SCF of holes

The high stress concentration found at the edge of a hole is of great practical importance. To denote
the highest stress caused by the hole, the stress concentration factor (SCF) is usually used and de®ned to
be the maximum stress at the hole boundary divided by the remote uniform stress. Since the hole is
assumed to be traction-free, the only stress component around the hole is the hoop stress snn: To ®nd
the maximum hoop stress, we ®rst employ the formula given in Eq. (5a). By using chain rule, the
de®nition of Eq. (17) and the relationship given in Eq. (2c) we obtain

snn � ÿnT�y�fff,m � ÿnT�y�
�
@fff
@x1

@x1

@m
� @fff
@x2

@x2

@m

�
� nT�y��cos ysss1 � sin ysss2�: �19�
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Substituting Eq. (18) into Eq. (19) and setting xÃ on the value of ẑa � eij, the hoop stress can bc
expressed in terms of the displacements along the hole boundary as

snn � nT�y�
ÿ
cos yQ� sin yRT

�
u,1�eij � � nT�y��cos yR� sin yT�u,2�eij � �20�

where, y and j are related by (Hwu, 1992)

rcos y � a�sin j� ke sin kj�, r sin y � ÿa�c cos j� ke sin kj�, �21�

in which

r2 � a2
�
k2e2 � sin2 j� c2cos2j� 2ke sin j sin kjÿ 2cke cos j cos kj

	
For an elliptical hole, a simple relation can be obtained by letting e � 0: Substituting Eq. (15) into Eq.
(20), we may further obtain an expression for the hoop stress written in terms of the displacements un,
and tractions tn of remote boundary nodes. The result is

snn �
XN
n�1

n�
OOO1Gn, 1 � OOO2Gn, 2

�
tn ÿ

h
OOO1

ÃYn, 1 � OOO2
ÃYn, 2

i
un

o
�22�

OOO1 � nT�y�
ÿ
cos yQ� sin yRT

�
, OOO2 � nT�y��cos yR� sin yT�:

Due to the anisotropic characteristic of materials, uncertainty of the geometry pro®le, and the
complexity of Eq. (22), it seems di�cult to get the analytical solution of maximum hoop stress. To ®nd
the maximum stress concentration of the hole, a numerical technique like the nonlinear optimization
may be employed.

6. SIF of cracks

For the crack problem, it is always interesting to know the stress intensity factors which are de®ned
as (Broek, 1974)

K �
8<:KII

KI

KIII

9=; � lim
r40

�������
2pr
p

sss2 �23�

where r is the distance ahead of the crack tip and sss2 can be obtained from Eqs. (15) and (18)2. In Eq.
(15), Gn, i and ÃYn, i are obtained by di�erentiating Eq. (10b) with respect to x̂i and adding together the
values contributed by the neighbor elements. The analytical expressions for the di�erentiation of UÃ and
TÃ have been provided in Eq. (16). By substituting the conditions of x̂14a, x̂2�0 and e � 0, c = 0 into
Eq. (23), we may derive a closed-form solution for the stress intensity factors as (Hwu, 1999)

K �
XN
n�1

��
RTG�n1 � TG�n2

�
tn ÿ

�
RTY�n1 � TY�n2

�
un

	 �24a�
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G�ni � lim
x̂14a

x̂2�0

����������������������
2p�x̂1 ÿ a�

p
Gn, i�Ãx�

�
�1
ÿ1

U�i �x��$2`mÿ1 �$1`m� dx, i � 1, 2 �24b�

Y�ni � lim
x̂14a

x̂2�0

����������������������
2p�x̂1 ÿ a�

p
ÃYn, i�Ãx�

�
�1
ÿ1

T�i �x��$2`mÿ1 �$1`m� dx, i � 1, 2 �24c�

U�1 �
1

2
������
pa
p Im
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�
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1

2
������
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p Im

(
A� pa

1ÿ za
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k�1

A� �pkza
1ÿ za

� Bÿ1 ÅBIk ÅA
T

)

T�1 �
1

a
������
pa
p Im

8<:B� z2a �s1 � pas2��
z2a ÿ 1

�
�1ÿ za� 2

�
ÿ
AT ÿ Bÿ1 ÅB ÅA

T
�9=;,

T�2 �
1

a
������
pa
p Im

8<:B� paz
2
a �s1 � pas2 ��

z2a ÿ 1
�
�1ÿ za� 2

� AT ÿ
X3
k�1

B� �paz
2
a �s1 � pas2��

z2a ÿ 1
�
�1ÿ za�2

� Bÿ1 ÅBIk ÅA
T

9=; �24d�

To evaluate the integrals G�ni and Y�ni from Eqs. (24b) and (24c) we should ®rst express U�i and T�i of Eq.
(24d) in terms of x: The connection between the integration variable x and the function variables za can
be found by using the x±x relation given in Eq. (10b), the x±za relation given in Eq. (2b), and za±za
relation given in Eq. (7).

Note that Eq. (24) provides a direct method for evaluating the stress intensity factor if the remote
displacements un and tractions tn are known on some closed contour containing the crack. The data on
the remote closed contour may also be supplied by any other method like the ®nite element method or
the experimental measurement. This is very di�erent from the conventional computation of the stress
intensity factors since they are usually obtained from the data near the crack tip. Even by the well-
known path independent J-integral (Rice, 1968), we use a path starting and ending at the crack surfaces,
while by Eq. (24), all the data used to calculate K are from the remote boundary. Using the
conventional ®nite element to ®nd a convergent solution for the stress intensity factors usually requires
®ne meshes near the crack tips. This is not only time consuming but also inaccurate. All these defects
have been overcome by the present BEM since the crack need not be meshed and the stress intensity
factors can be obtained using only the remote boundary displacements and tractions.
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7. Numerical examples

To show that the proposed formulae obtained in Eq. (22) for SCF of holes, and Eq. (24) for SIF of
cracks are accurate, e�cient and versatile, several examples are illustrated in this section. All the
examples shown in this section consider a rectangular plate containing a hole (or crack). A uniform
tension s0 � 1 MPa in the x2-direction is applied on the plate boundary and the plate size is W = H =
0.3 m. The plate is composed of the orthotropic material whose mechanical properties are E1 � 114:8
GPa, E2 � E3 � 11:72 GPa, G12 � G13 � G23 � 9:65 GPa, n12 � n13 � n23 � 0:21: �xc, yc� denotes the
position of the center of the hole(or crack). yc denotes the hole(or crack) orientation directed
counterclockwise from the x1-axis. (see Fig. 2).

Example 1: SCF of holes

Table 1 shows the results of SCF at position j � 08 of various centered-holes. Two di�erent methods
are used to calculate SCF. One is by Eq. (22), and the other is by direct calculation of the hoop stress.
To show that the values of un, and tn of the remote boundaries used in Eq. (22) can also be supplied by
other sources, the results calculated by the commercial ®nite element code IDEAS are also compared.
From this table it can easily be seen that all the results are similar no matter what kind of method is
used. The main di�erence is that the CPU time for computing SCF by the present BEM method is
much faster than that by IDEAS. Moreover, the use of Eq. (22) may also help IDEAS to obtain SCF
more quickly (about four times faster).

To know the hoop stress distribution along the hole boundary, the case of the triangular hole was
taken up as an illustration and its results are plotted in Fig. 3. From this ®gure, we see that the
maximum hoop stress does not necessarily occur at the position,j � 08: The maximum hoop stress is a
compressive stress occurring at j � 100:88 and j � 259:28, and its value is 6:297s0: While the maximum
tensile hoop stress occurs at j � 08 whose value is 4:654s0:

The convergence of SCF with respect to the element number is shown in Fig. 4 for the present
BEM and IDEAS. From this ®gure, we can get the complete comparison between these two
methods. Only 16 elements, that BEM needed, can obtain the convergence value of SCF, but

Table 1

SCF at the position j � 08 of various centered-holes �a=W � 0:1,xc=W � 0:5,yc=W � 0:5,yc � 08)

BEMa FEMb

SCF CPUc SCF CPUc Nodes Elements

Circle �c � l, e � 0) Eq. (22) 2.531 1.71 s 2.527 14.28 s 1016 318

Hoop solution 2.530 1.69 s 2.518 49.44 s 3435 1084

Ellipse �c � 0:6, e � 0) Eq. (22) 3.403 1.71 s 3.371 14.29 s 1016 318

Hoop solution 3.403 1.69 s 3.359 45.34 s 3148 1000

Triangle �c � 1, e � 0:15, k � 2) Eq. (22) 3.758 6.02 s 3.713 22.81 s 1114 334

Hoop solution 3.757 5.98 s 3.687 72.38 s 4824 1456

Square �c � 1, e � 0:15, k � 3) Eq. (22) 4.201 7.79 s 4.128 21.58 s 1108 332

Hoop solution 4.200 7.70 s 4.103 55.93 s 3880 1232

Pentagon �c � 1, e � 0:15, k � 4) Eq. (22) 5.564 11.24 s 5.479 30.14 s 1196 344

Hoop solution 5.563 11.08 s 5.413 164.55 s 7907 2527

a Present BEM solution with 16 elements and 20 nodes.
b Based upon the data provided by IDEAS.
c All calculations are executed in HP9000-735 workstation with 120MB RAM.
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IDEAS needed 3084 elements to converge SCF. Although we spent much time preparing the
Green's function of BEM, the higher computational speed and element saving make the present
BEM attractive.

Table 2 lists the SCF of triangular holes of di�erent sizes and locations. For the centered-holes of
di�erent sizes, the maximum tensile stress always occurs at j � 08 and the maximum compressive stress

Fig. 3. Hoop stress around the triangular hole. �a=W � 0:2, c � 1, k � 2, e � 0:15, �xc=W, yc=W � � �0:5, 0:5�)

Fig. 4. Convergence of SCF with respect to the element number.
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always occurs at,j � 100:88 and j � 259:28: Moreover, the bigger the hole size, the larger the SCF. For
holes of di�erent locations, the maximum tensile stress still occurs at j � 08 while the maximum
compressive stress occurs at j � 100:88 or j � 259:28 depending on its location. Moreover, the SCF is
higher when the hole is closer to the plate boundary, which is reasonable.

Table 2

SCF of various triangular holesa �c � 1, k � 2, e � 0:15)

Centered holes of di�erent sizes �xc=W � yc=W � 0:5)

a/W 0.067 0.100 0.133 0.167 0.200 0.233 0.267 0.300

SCFT j � 08 3.5863 3.7576 3.9976 4.2467 4.6544 5.1717 5.9545 7.1014

SCFC j � 100:88, 259.28 3.4819 4.1488 4.8040 5.2800 6.2971 7.5328 9.3204 11.5653

Holes of di�erent locations �a=W � 0:1�

xc=W 0.3 0.4 0.5 0.6 0.7 0.7 0.7 0.7 0.7

yc=W 0.7 0.7 0.7 0.7 0.7 0.6 0.5 0.4 0.3

SCFT j � 08 3.7919 3.8440 3.8561 3.8948 4.0123 3.9827 3.9797 4.0566 4.0223

SCFC j � 100:88 4.7485 4.4546 4.4335 4.4746 4.7190 4.5729 4.4905

SCFT j � 259:28 4.5682 4.7772

a SCFT: SCF for maximum tensile stress; SCFC: SCF for maximum compressive stress.

Table 3

Stress intensity factor KI of the right tip of various cracks

2a=W (xc, yc) yc BEMa FEMb

KI (MPa Zm ) CPUc (s) KI (MPa Zm ) CPUc (s) Nodes Elements

0.4 (0.5, 0.5) 08 Eq. (24) 0.477 1.71 0.441 54.21 1604 442

Near tip solution 0.475 1.69 0.432 221.32 14728 4802

0.2 (0.5, 0.5) 08 Eq. (24) 0.314 1.71 0.305 54.21 1604 442

Near tip solution 0.313 1.69 0.301 219.36 14726 4800

0.3 (0.7, 0.5) 08 Eq. (24) 0.420 1.73 0.403 54.21 1604 442

Near tip solution 0.418 1.70 0.392 223.40 14732 4800

0.3 (0.7, 0.7) 08 Eq. (24) 0.424 1.73 0.411 54.21 1604 442

Near tip solution 0.422 1.70 0.397 224.01 14736 4800

0.3 (0.5, 0.5) 158 Eq. (24) 0.371 1.74 0.352 59.75 1684 484

Near tip solution 0.370 1.71 0.340 288.73 15706 5126

0.3 (0.5, 0.5) 308 Eq. (24) 0.304 1.73 0.271 59.75 1684 484

Near tip solution 0.303 1.70 0.262 291.27 15844 5153

0.3 (0.5, 0.5) 458 Eq. (24) 0.207 1.73 0.196 59.75 1684 484

Near tip solution 0.207 1.70 0.181 297.54 16096 5204

0.3 (0.5, 0.5) 608 Eq. (24) 0.106 1.73 0.094 59.75 1684 484

Near tip solution 0.105 1.70 0.086 294.12 15964 5176

0.3 (0.5, 0.5) 758 Eq. (24) 0.027 1.74 0.023 59.75 1684 484

Near tip solution 0.026 1.71 0.021 295.38 16008 5184

0.3 (0.5, 0.5) 908 Eq. (24) 0.003 1.73 0.001 59.75 1684 484

Near tip solution 0.003 1.70 0.001 293.15 15922 5168

a Present BEM solution with 16 elements and 20 nodes.
b Based upon the data provided by IDEAS.
c All calculations are executed in HP9000-735 workstation with 120 MB RAM.
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Example 2: SIF of cracks

The calculation of the stress intensity factors are usually done by using the near tip solutions. To see
the accuracy and e�ciency of the present method, Table 3 shows the SIFs of the right tip of various
cracks calculated by Eq. (24) as well as those by the near tip solution both through the present BEM
and IDEAS. Same as the hole problems, our results calculated indirectly by the boundary displacements
and tractions are near to those obtained directly by the near tip solutions. The CPU time for computing
SIF by the present BEM method is over 100 times faster than that by IDEAS. Moreover, the use of Eq.
(24) may also help IDEAS to obtain SIF more quickly (about four times faster).

8. Conclusions

In this paper, two analytical formulae expressed in terms of the remote boundary tractions and
displacements have been obtained. One is for the evaluation of the stress concentration factors of
internal elliptical or polygon-like holes, the other is for the stress intensity factors of internal straight
cracks. Both of them are valid for two-dimensional linear anisotropic elastic problems. Although the
analytical solutions have a complex mathematical form, numerical implementation proves that they are
really accurate, e�cient and versatile. Moreover, the displacements and tractions of the remote
boundaries can also be supplied by any other method like the ®nite element method or by experimental
measurement.
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